
Good to the last drop
Writing robust Flask and Django Apps

1

Clara McCreery | r2c

 @r2cdev

https://twitter.com/r2cdev

Who are we?

me:
Clara McCreery, software engineer @ r2c
MS in Computer Science from Stanford University
Previously: researcher at MIT Lincoln Laboratory

2

r2c:
We’re a static analysis startup in
San Francisco on a mission to
profoundly improve software
security and reliability

Note: We’ll use the open source tool Semgrep to explore security bugs during
 this talk. Search code with code that looks like it

● Read docs for your framework & stay up to date (Flask Security Considerations or Django
Security Docs)

● Favor secure-by-default frameworks (e.g. SQLAlchemy) and architectures (e.g. default
True for TLS verification)

● Check your code with code! In reality, you should automate this stuff and not have to
be an expert.

tl;dr

3

https://semgrep.dev
https://flask.palletsprojects.com/en/1.1.x/security/
https://docs.djangoproject.com/en/3.1/topics/security/
https://docs.djangoproject.com/en/3.1/topics/security/

Writing Secure Flask
1. Have a Security Philosophy
2. Flask Security Bugs (bug → mitigation → detection)
3. Scan Every Commit and Build

https://arstechnica.com/information-technology/2020/03/bugcrowd-tries-to-muzzle-hacker-who-found-netflix-account-compr
omise-weakness/

https://arstechnica.com/information-technology/2020/03/bugcrowd-tries-to-muzzle-hacker-who-found-netflix-account-compromise-weakness/
https://arstechnica.com/information-technology/2020/03/bugcrowd-tries-to-muzzle-hacker-who-found-netflix-account-compromise-weakness/

https://labs.detectify.com/2015/10/02/how-patreon-got-hacked-publicly-exposed-werkzeug-debugger/

https://labs.detectify.com/2015/10/02/how-patreon-got-hacked-publicly-exposed-werkzeug-debugger/

What do they have in common?

Humans will make mistakes, eventually.

A short complete wall is better than an
isolated tall gatehouse.

Philosophy

Don’t do this...
https://www.reddit.com/r/pics/comments/8sayj8/a_polite_but_useless_gate/

https://www.reddit.com/r/pics/comments/8sayj8/a_polite_but_useless_gate/

Humans will make mistakes, eventually.

A short complete wall is better than an
isolated tall gatehouse.

https://momentummag.com/tag/bike-lock/

https://momentummag.com/tag/bike-lock/

Writing Secure Flask
1. Have a Security Philosophy

2. Flask Security Bugs (bug → mitigation → detection)
3. Scan Every Commit and Build

← your responsibility

cpython

libc / musl / CRT

operating system

builtin / 3rd-party libs (Flask/Django)

app.py

Ontologies:
● Open Web Application Security Project (OWASP) Top 10
● MITRE CWE (extensive, used by governments, etc.)

Stack/Security Overview

https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/

1. Injection
2. Broken authentication
3. Sensitive data exposure
4. XML XXE
5. Broken access control
6. Security misconfiguration
7. Cross-site scripting (XSS)
8. Insecure deserialization
9. Components with known vulnerabilities

10. Insufficient logging & monitoring

Top 10 from Open Web Application Security Project

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

1. Injection
2. Broken authentication
3. Sensitive data exposure
4. XML XXE
5. Broken access control
6. Security misconfiguration
7. Cross-site scripting (XSS)
8. Insecure deserialization
9. Components with known vulnerabilities

10. Insufficient logging & monitoring

Top 10 from Open Web Application Security Project

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

#6: Security Misconfiguration

“Such flaws frequently give attackers unauthorized access to some system
data or functionality. Occasionally, such flaws result in a complete system
compromise.” - OWASP Top 10

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A6-Security_Misconfiguration

#6: Security Misconfiguration

1. Ok to run this while developing
2. Opens up a debugging console on error

from flask import Flask

if __name__ == "__main__":
 # ruleid:debug-enabled
 app.run("0.0.0.0", debug=True)

what's the problem?

https://labs.detectify.com/2015/10/02/how-patreon-got-hacked-publicly-exposed-werkzeug-debugger/

https://labs.detectify.com/2015/10/02/how-patreon-got-hacked-publicly-exposed-werkzeug-debugger/

How do we audit for this issue?

https://semgrep.dev/s/7g6e/

Solution: https://semgrep.dev/s/ErgL/

18

https://semgrep.dev/s/7g6e/
https://semgrep.dev/s/ErgL/

#6: Security Misconfiguration

1. Cookie could be requested over HTTP connection, not HTTPS
2. Cross-site request forgery (CSRF)
3. Cookie could be read via Javascript (stealing user sessions if XSS happens)

@app.route('/login', methods=['POST'])
def login():
 ...
 session.clear()
 session['user_id'] = user.id
 session.permanent = True
 ...

what's the problem?

#6: Security Misconfiguration

https://arstechnica.com/information-technology/2020/03/bugcrowd-tries-to-muzzle-hacker-who-found-netflix-account-compr
omise-weakness/

https://arstechnica.com/information-technology/2020/03/bugcrowd-tries-to-muzzle-hacker-who-found-netflix-account-compromise-weakness/
https://arstechnica.com/information-technology/2020/03/bugcrowd-tries-to-muzzle-hacker-who-found-netflix-account-compromise-weakness/

Fix
1. Follow Flask session cookie recommendations:

2. Do this for all cookies you create:

3. Prevent merges to master with `secure` and `httponly` set to False

app.config.update(
 SESSION_COOKIE_SECURE=True,
 SESSION_COOKIE_HTTPONLY=True,
 SESSION_COOKIE_SAMESITE='Lax',
)

resp.set_cookie('user', 'flask', secure=True, httponly=True, samesite='Lax')

https://flask.palletsprojects.com/en/1.1.x/security/#set-cookie-options

How do we audit for this issue?

https://semgrep.live/s/OZR

Solution: https://semgrep.live/s/vWX

22

https://semgrep.live/s/OZR
https://semgrep.live/s/vWX

1. Injection
2. Broken authentication
3. Sensitive data exposure
4. XML XXE
5. Broken access control
6. Security misconfiguration
7. Cross-site scripting (XSS)
8. Insecure deserialization
9. Components with known vulnerabilities

10. Insufficient logging & monitoring

Top 10 from Open Web Application Security Project

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

#1: Injection

“Injection can result in data loss, corruption, or
disclosure to unauthorized parties, loss of
accountability, or denial of access. Injection can
sometimes lead to complete host takeover.

Injection vulnerabilities are often found in SQL,
LDAP, XPath, or NoSQL queries, OS commands, XML
parsers, SMTP headers, expression languages, and
ORM queries.” - OWASP Top 10

Types of injection:

● SQL injection
● Command injection
● Code injection
● Header injection
● Template injection

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection

#1: Injection, SQL Injection
def search(request):
 user = request.GET['q']

pw = request.GET['p']
 sql = f"SELECT * FROM users WHERE name='%{user}%' and password='%{pw}%';"

 cursor = db.cursor()
 cursor.execute(sql)
 ...

what's the problem?

#1: Injection, SQL Injection

user="' OR 1=1;"--"

Database sees:

"SELECT * FROM users WHERE name='' OR 1=1;"--”’ and ...

def search(request):
 user = request.GET['q']

pw = request.GET['p']
 sql = f"SELECT * FROM users WHERE name='%{user}%' and password='%{pw}%';"

 cursor = db.cursor()
 cursor.execute(sql)
 ...

#1: Injection, SQL Injection

user="' OR 1=1;"--"

Database sees:

"SELECT * FROM users WHERE name='' OR 1=1;"

def search(request):
 user = request.GET['q']

pw = request.GET['p']
 sql = f"SELECT * FROM users WHERE name='%{user}%' and password='%{pw}%';"

 cursor = db.cursor()
 cursor.execute(sql)
 ...

Fix
1. Don’t use SQL (Use an ORM)

2. Maintain separation between code and data -- parameterized queries

3. Sanitize all user input (hard to remember to do it everywhere) (DO NOT USE)

4. Prevent merges to master that side-step any of the above (semgrep example).

user = User.get(request.query[‘id’])

user = q.exec(‘SELECT * WHERE id=%s’ % (strip_bad_chars(request.query[‘id’])))

user = q.exec(‘SELECT * WHERE id=?’, request.query[‘id’])

https://semgrep.live/?registry=python.django.security.injection.sql.sql-injection-using-raw

1. Injection
2. Broken authentication
3. Sensitive data exposure
4. XML XXE
5. Broken access control
6. Security misconfiguration
7. Cross-site scripting (XSS)
8. Insecure deserialization
9. Components with known vulnerabilities

10. Insufficient logging & monitoring

Top 10 from Open Web Application Security Project

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

But wait, there's more!
OWASP Top 10 for webapps

1. Injection
2. Broken authentication
3. Sensitive data exposure
4. XML XXE
5. Broken access control
6. Security misconfiguration
7. Cross-site scripting (XSS)
8. Insecure deserialization
9. Components with known vulnerabilities

10. Insufficient logging & monitoring

OWASP Top 10 for APIs

1. BOLA (Broken Object Level Authorization)
2. Broken Authentication
3. Excessive Data Exposure
4. Lack of Resources & Rate Limiting
5. BFLA (Broken Function Level Authorization)
6. Mass Assignment
7. Security Misconfiguration
8. Injection
9. Improper Assets Management

10. Insufficient Logging & Monitoring

security

1. Have a Security Philosophy
2. Flask Security Bugs (bug → mitigation → detection)
3. Scan Every Commit and Build

Writing Secure Flask

What kinds of tools?
● Secure-by-design languages and frameworks
● Static analysis
● Formal methods
● Dynamic analysis (fuzzing, etc.)
● Let people poke it (bug bounties!)

Frameworks
Good frameworks and good defaults

● Avoid SQL injection: SQLAlchemy (not foolproof)
● Avoid XSS: React.js
● Avoiding XML vulnerabilities: defusedxml
● Avoid some CSRF with authentication via JWT (JSON Web Tokens) instead of cookies

What makes some better than others?

OK: "Do not use this in a production environment"
BETTER: "Do not use this in a production environment, or you will get hacked"
BEST: "This is production-ready by default, but you are running with

--DANGEROUS_ALLOW_ARBITRARY_CODE_FROM_USERS, so we're letting
you do something scary, but don't you forget about it!"

Bad example: render_template_string vs render_template in Flask
Good example: dangerouslySetInnerHTML in React

Frameworks

Static Analysis Tools
● Free:

○ grep (!?)
○ Bandit (64 security rules) or Dlint (38 security rules, newer)
○ Flake8 and associated plugins
○ semgrep has >150 security checks for python

(it's free, open-source, and made by r2c!)
● Proprietary/closed license/SaaS:

○ SonarPython (36 security rules)
○ Commercial tools like Coverity, Fortify, Veracode, Checkmarx ($$$)

https://pypi.org/project/bandit/
https://github.com/dlint-py/dlint
https://semgrep.dev/r?lang=python&sev=ERROR,WARNING,INFO&tag=security

✓ ✓

✓ ✓

Create
new branch

$ git commit
Merge

Pull Request
Builds & Review

✗

✗

tl;dr

I’d love your feedback on this presentation! https://r2c.dev/survey

● Read docs for your framework & stay up to date (Flask Security Considerations)
● Favor secure-by-default frameworks (e.g. SQLAlchemy) and architectures (e.g. default

True for TLS verification)
● Check your code with code!

○ Existing toolkits like Flake8, Bandit, Dlint
○ "Custom static analysis" with Semgrep

https://r2c.dev/survey
https://flask.palletsprojects.com/en/1.1.x/security/
https://flake8.pycqa.org/en/latest/
https://bandit.readthedocs.io/
https://github.com/duo-labs/dlint
https://semgrep.dev

Want to learn more about Semgrep?

Learn how to write custom rules:
- Tutorial

See more rules and rulesets:
- Explore

Run on the command line:
- Docs

For more questions and to stay in touch, join
our Community Slack!

http://semgrep.dev
http://semgrep.dev/learn
https://semgrep.dev/explore
https://semgrep.dev/docs/getting-started/#run-semgrep-locally
https://join.slack.com/t/r2c-community/shared_invite/enQtNjU0NDYzMjAwODY4LWE3NTg1MGNhYTAwMzk5ZGRhMjQ2MzVhNGJiZjI1ZWQ0NjQ2YWI4ZGY3OGViMGJjNzA4ODQ3MjEzOWExNjZlNTA

Bonus content...

1. Injection
2. Broken authentication
3. Sensitive data exposure
4. XML XXE
5. Broken access control
6. Security misconfiguration
7. Cross-site scripting (XSS)
8. Insecure deserialization
9. Components with known vulnerabilities

10. Insufficient logging & monitoring

Top 10 from Open Web Application Security Project

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

“The impact of XSS is moderate for reflected and DOM XSS, and severe for stored XSS,
with remote code execution on the victim’s browser, such as stealing credentials,
sessions, or delivering malware to the victim.

XSS is the second most prevalent issue in the OWASP Top 10, and is found in around two
thirds of all applications.” - OWASP Top 10

#7: Cross-Site Scripting (XSS)

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)

<body>
 <h1>welcome to my website {{ app_name }}</h1>
 <li class=”my-favorite-cities”>
 {{ value }}

</body>

#7: Cross-Site Scripting (XSS)

what's the problem?

<body>
 <h1>welcome to my website {{ app_name }}</h1>
 <li class=”my-favorite-cities”>
 {{ value }}

</body>

#7: Cross-Site Scripting (XSS)

what's the problem?

value = "onmouseover=alert('xss:' + document.cookie)"

#7: Cross-Site Scripting (XSS)
Straight from the docs:

Flask configures Jinja2 to automatically escape all values unless explicitly told otherwise. This should rule
out all XSS problems caused in templates, but there are still other places where you have to be careful:

- generating HTML without the help of Jinja2
- calling Markup on data submitted by users
- sending out HTML from uploaded files, never do that, use the Content-Disposition: attachment

header to prevent that problem.
- sending out textfiles from uploaded files. Some browsers are using content-type guessing

based on the first few bytes so users could trick a browser to execute HTML.

Another thing that is very important are unquoted attributes.

https://flask.palletsprojects.com/en/1.1.x/security/

#7: Cross-Site Scripting (XSS)
Flask is configured to autoescape most views.

Some gotchas:

● Template files must have the .html extension
● HTML attributes must be quoted
● Using template variables for href in anchor tags is

unsafe

#7: Cross-Site Scripting (XSS)

Fix
1. Use a framework like React.js which is less vulnerable to XSS

2. Always use .html extension for templates

3. Set the Content Security Policy for your application

4. Use Flask-Talisman by Google

5. Prevent merges to master that violate any of the above.

render_template("index.html", context)

response.headers['Content-Security-Policy'] = "script-src https:"

from flask_talisman import Talisman; app = Flask(...); Talisman(app)

<script src="https://unpkg.com/react@16/umd/react.development.js" crossorigin>

https://github.com/GoogleCloudPlatform/flask-talisman

