
Statistical Language
Modeling with N-grams in

Python
By Olha Diakonova

What are n-grams
● Sequences of n language units
● Probabilistic language models

based on such sequences
● Collected from a text or speech

corpus
● Units can be characters, sounds,

syllables, words
● Probability of nth element based

on preceding elements
● Probability of the whole

sequence

Google N-gram Viewer

Probabilities for language modeling
● Two related tasks:
● Probability of a word w given history h

P(w|h) = P(w, h) / P(h)
P(that|water is so transparent) =
C(water is so transparent that) /

C(water is so transparent)

● Probability of the whole sentence
● Chain rule of probability

P(wn
1) = P(w1) P(w2)|P(w1) P(w3)|P(w2

1) … P(wn|w
n-1

1) =
= ∏k=1P(wk|w

k−1
1)

● Not very helpful: no way to compute the exact probability of all
preceding words

Probabilities for language modeling
● Markov assumption: the intuition behind n-grams
● Probability of an element only depends on one or a couple of previous

elements
● Approximate the history by just the last few words

P(wn|w
n−1

1) ≈ P(wn|w
n−1

n−N+1)

● N-grams are an insufficient language model:
The computer which I had just put in the machine room on the fifth floor crashed.

● But we can still get away with it in a lot of cases

What are n-grams used for
● Spell checking

The office is about 15 minuets away.
P(about 15 minutes away) > P(about 15 minuets away)

● Text autocomplete
● Speech recognition

P(I saw a van) > P(eyes awe of an)

● Handwriting recognition
● Automatic language detection
● Machine translation

P(high winds tonight) > P(large winds tonight)

● Text generation
● Text similarity detection

Implementing n-grams

sentence = 'This is an awesome sentence .'

char_unigrams = [ch for ch in sentence]

word_unigrams = [w for w in sentence.split()]

print(char_unigrams)

print(word_unigrams)

['T', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', 'n', ' ',

'a', 'w', 'e', 's', 'o', 'm', 'e', ' ', 's', 'e', 'n', 't',

'e', 'n', 'c', 'e', '.']

['This', 'is', 'an', 'awesome', 'sentence.']

● Unigrams: sequences of 1
element

● Elements are independent
● Concept is similar to

bag-of-words
● Can be used for a dataset

with sparse features or as a
fallback option

Implementing n-grams

from nltk import bigrams

sentence = 'This is an awesome sentence .'

print(list(bigrams(sentence.split())))
print(list(trigrams(sentence.split())))

Bigrams: [('This', 'is'), ('is', 'an'), ('an',
'awesome'), ('awesome', 'sentence'),
('sentence', '.')]
Trigrams: [('This', 'is', 'an'), ('is', 'an',
'awesome'), ('an', 'awesome', 'sentence'),
('awesome', 'sentence', '.')]

● Bigrams: sequences of
2 elements

● Trigrams: sequences of
3 elements

Implementing n-grams

● Generalized way of
making n-grams for
any n

● 4- and 5-grams:
produce a more
connected text, but
there is a danger of
overfitting

sent = "This is an awesome sentence for making n-grams ."

def make_ngrams(text, n):
 tokens = text.split()
 ngrams = [tuple(tokens[i:i+n]) for i in
range(len(tokens)-n+1)]
 return ngrams

for ngram in make_ngrams(sent, 5):
 print(ngram)

('This', 'is', 'an', 'awesome', 'sentence')
('is', 'an', 'awesome', 'sentence', 'for')
('an', 'awesome', 'sentence', 'for', 'making')
('awesome', 'sentence', 'for', 'making', 'n-grams')
('sentence', 'for', 'making', 'n-grams', '.')

Implementing n-grams

● NLTK implementation
● Paddings at string start &

end
● Ensure each element of the

sequence occurs at all
positions

● Keep the probability
distribution correct

from nltk import ngrams

sent = "This is an awesome sentence ."
grams = ngrams(sent.split(),5, pad_right=True,

right_pad_symbol='</s>',
pad_left=True,
left_pad_symbol='<s>',)

for g in grams:
 print(g)

('<s>', '<s>', '<s>', '<s>', 'This')
('<s>', '<s>', '<s>', 'This', 'is')
('<s>', '<s>', 'This', 'is', 'an')
('<s>', 'This', 'is', 'an', 'awesome')
('This', 'is', 'an', 'awesome', 'sentence')
('is', 'an', 'awesome', 'sentence', '.')
('an', 'awesome', 'sentence', '.', '</s>')
('awesome', 'sentence', '.', '</s>', '</s>')
('sentence', '.', '</s>', '</s>', '</s>')
('.', '</s>', '</s>', '</s>', '</s>')

Dealing with zeros

● What if we see things that never occur in the corpus?
● That’s where smoothing comes in
● Steal probability mass from the present n-grams and share it

with the ones that never occur
● OOV - out of vocabulary words
● Add-one estimation aka Laplace smoothing
● Backoff and interpolation
● Good-Turing smoothing
● Kneser-Ney smoothing

Practice time
● Let’s generate text using an n-gram model!
● The Witcher aka Geralt of Rivia quotes

References
1. Dan Jurafsky. N-gram Language Models - Chapter from Speech and

Language Processing: https://web.stanford.edu/~jurafsky/slp3/3.pdf
2. Dan Jurafsky lectures: https://youtu.be/hB2ShMlwTyc
3. GitHub: https://github.com/olga-black/ngrams-pykonik
4. Bartosz Ziołko, Dawid Skurzok. N-grams Model For Polish:

http://www.dsp.agh.edu.pl/_media/pl:resources:ngram-docu.pdf
5. Corpus source: https://witcher.fandom.com/wiki/Geralt_of_Rivia/Quotes
6. Corpus source: https://www.magicalquote.com/character/geralt-of-rivia/

https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://youtu.be/hB2ShMlwTyc
https://github.com/olga-black/ngrams-pykonik
http://www.dsp.agh.edu.pl/_media/pl:resources:ngram-docu.pdf
https://witcher.fandom.com/wiki/Geralt_of_Rivia/Quotes
https://www.magicalquote.com/character/geralt-of-rivia/

About me
● Olha Diakonova
● Advertisement Analyst for Cognizant @ Google
● olha.v.diakonova@gmail.com
● GitHub: https://github.com/olga-black
● Pykonik Slack: Olha

https://github.com/olga-black

Thank you very much!

