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What are n-grams

unigram
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e Units can be characters, sounds,
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Probabilities for language modeling

e Two related tasks:

e Probability of a word w given history h I;((thaﬂwater is so transparent))7
_ water is so transparent that
P(wih) = P(w, h) I'P(h) C(water is so transparent)

e Probability of the whole sentence

e Chain rule of probability
P(w",) = P(w,) P(w,)IP(w,) P(w,)IP(W?) ... P(w_[w"" ) =
= [N P(W, W)

e Not very helpful: no way to compute the exact probability of all
preceding words



Probabilities for language modeling

e Markov assumption: the intuition behind n-grams

e Probability of an element only depends on one or a couple of previous
elements

e Approximate the history by just the last few words

-1\ ~ -1
POW, W™ = PW W)

e N-grams are an insufficient language model:
The computer which | had just put in the machine room on the fifth floor crashed.

e But we can still get away with it in a lot of cases



What are n-grams used for

Spell checking
The office is about 15 minuets away.

P(about 15 minutes away) > P(about 15 minuets away)

Text autocomplete

Speech recognition
P(l saw a van) > P(eyes awe of an)

Handwriting recognition
Automatic language detection
Machine translation
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English
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German
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French
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0.01

P(high winds tonight) > P(large winds tonight)

Text generation
Text similarity detection




Implementing n-grams

Py UnlgramS SequenCGS Of 1 sentence = 'This is an awesome sentence .'
| t char unigrams = [ch for ch in sentence]
elemen word unigrams = [w for w in sentence.split()]

e Elements are independent

e Conceptis similar to o terae i
bag-of-words

e (Can be used for a dataset
with sparse features or as a L o
fallback option ot rer ter o, e ver, o er

['This', 'is', 'an', 'awesome', 'sentence.']



Implementing n-grams

e Bigrams: sequences of
2 elements

e Trigrams: sequences of
3 elements

from nltk import bigrams

|l

sentence = 'This is an awesome sentence .

print (list (bigrams (sentence.split())))
print (list (trigrams (sentence.split())))

Bigrams: [('This', 'is'), ('is', 'an'), ('an',
'awesome'), ('awesome', 'sentence'),
('sentence', '.")]

Trigrams: [('This', 'is', 'an'), ('is', 'an',

'awesome', 'sentence'),

l'l)]

'awesome'), ('an',

('awesome', 'sentence',



Implementing n-grams

Generalized way of
making n-grams for
any n

4- and 5-grams:
produce a more
connected text, but
there is a danger of
overfitting

sent = "This is an awesome sentence for making n-grams .

def make ngrams (text, n):

tokens = text.split()

ngrams = [tuple(tokens[i:i+n]) for i in
range (len (tokens) -n+1) ]

return ngrams

for ngram in make ngrams(sent, 5):

print (ngram)

This', 'is', 'an', 'awesome', 'sentence'
is' 'an', 'awesome', 'sentence', 'for')
an

awesome', 'sentence', 'for', 'making',

( l
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( 1
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)

, awesome‘, 'sentence', 'for', 'making')
'n-grams'
sentence', 'for', 'making', 'n-grams', '.

"



Implementing n-grams

from nltk import ngrams

o NLTK imp|ementati0n sent = "This is an awesome sentence ."

e Paddings at string start & T e e
end pad left=True,

e Ensure each element of the left_pad symbol='<s>',)
sequence occurs at all for g in grams:
positions prantle)

'<s>', '<s>', '<s>', '<s>', 'This')

'<g>', '<s>', '<g>', 'This', 'is'")

'<s>', '<s>', 'This', 'is', 'an')

'<s>', 'This', 'is', 'an', 'awesome')
'This', 'is', 'an', 'awesome', 'sentence')
is', 'an', 'awesome', 'sentence', '.'")

e Keep the probability
distribution correct

1

'an', 'awesome', 'sentence', '.', '</s>")
'awesome', 'sentence', '.', '</s>', '</s>")
'sentence', '.', '</s>', '</s>', '</s>")

|

Sy '<s>, /s>, T8>, 1< /s>T)



Dealing with zeros

e \What if we see things that never occur in the corpus?

e That's where smoothing comes in

Steal probability mass from the present n-grams and share it
with the ones that never occur

OQV - out of vocabulary words

Add-one estimation aka Laplace smoothing

Backoff and interpolation

Good-Turing smoothing

Kneser-Ney smoothing



Practice time

e Let's generate text using an n-gram model!
e The Witcher aka Geralt of Rivia quotes

('3 The Witcher Universe
‘ v,

Some days Other days
| am like- | am like-
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