Statistical Language
Modeling with N-grams in
Python

By Olha Diakonova

What are n-grams

unigram

c MR Llo] [c[ofMDb] [oLE e Sequences of n language units

bigram e Probabilistic language models

it (o based on such sequences

[Ho Lo e Collected from a text or speech

BT (=4 corpus

e Units can be characters, sounds,
This is Big Data Al Book syllables, words

e Probability of n"" element based

woon [DEECNCENNC SN on proceding elements
e Probability of the whole
sequence

Google N-gram Viewer

0.000220% ~
0.000200% ~
0.000180%
0.000160% Frankenstein
0.000140%
0.000120% ~
0.000100% Albert Einstein

0.000080% - Mahatma Gandhi

0.000060%

2008
Mahatma Gandhi 0.0000783847%
Albert Einstein 0.0000944789%
Frankenstein 0.0001518249%

0.000040%

0.000020% -

0.000000% T T T T T T T 2 = :
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

(click on line/label for focus)

Probabilities for language modeling

e Two related tasks:

e Probability of a word w given history h I;((thaﬂwater is so transparent))7
_ water is so transparent that
P(wih) = P(w, h) I'P(h) C(water is so transparent)

e Probability of the whole sentence

e Chain rule of probability
P(w",) = P(w,) P(w,)IP(w,) P(w,)IP(W?) ... P(w_[w"") =
= [N P(W, W)

e Not very helpful: no way to compute the exact probability of all
preceding words

Probabilities for language modeling

e Markov assumption: the intuition behind n-grams

e Probability of an element only depends on one or a couple of previous
elements

e Approximate the history by just the last few words

-1\ ~ -1
POW, W™ = PW W)

e N-grams are an insufficient language model:
The computer which | had just put in the machine room on the fifth floor crashed.

e But we can still get away with it in a lot of cases

What are n-grams used for

Spell checking
The office is about 15 minuets away.

P(about 15 minutes away) > P(about 15 minuets away)

Text autocomplete

Speech recognition
P(l saw a van) > P(eyes awe of an)

Handwriting recognition
Automatic language detection
Machine translation

(B[&

oL

[V 4

English

0.75

0.47

0.02

0.74

German

0.10

0.37

0.53

0.03

French

0.38

0.69

0.01

0.01

P(high winds tonight) > P(large winds tonight)

Text generation
Text similarity detection

Implementing n-grams

Py UnlgramS SequenCGS Of 1 sentence = 'This is an awesome sentence .'
| t char unigrams = [ch for ch in sentence]
elemen word unigrams = [w for w in sentence.split()]

e Elements are independent

e Conceptis similar to o terae i
bag-of-words

e (Can be used for a dataset
with sparse features or as a L o
fallback option ot rer ter o, e ver, o er

['This', 'is', 'an', 'awesome', 'sentence.']

Implementing n-grams

e Bigrams: sequences of
2 elements

e Trigrams: sequences of
3 elements

from nltk import bigrams

|l

sentence = 'This is an awesome sentence .

print (list (bigrams (sentence.split())))
print (list (trigrams (sentence.split())))

Bigrams: [('This', 'is'), ('is', 'an'), ('an',
'awesome'), ('awesome', 'sentence'),
('sentence', '.")]

Trigrams: [('This', 'is', 'an'), ('is', 'an',

'awesome', 'sentence'),

l'l)]

'awesome'), ('an',

('awesome', 'sentence',

Implementing n-grams

Generalized way of
making n-grams for
any n

4- and 5-grams:
produce a more
connected text, but
there is a danger of
overfitting

sent = "This is an awesome sentence for making n-grams .

def make ngrams (text, n):

tokens = text.split()

ngrams = [tuple(tokens[i:i+n]) for i in
range (len (tokens) -n+1)]

return ngrams

for ngram in make ngrams(sent, 5):

print (ngram)

This', 'is', 'an', 'awesome', 'sentence'
is' 'an', 'awesome', 'sentence', 'for')
an

awesome', 'sentence', 'for', 'making',

(l
(1
(l
(1
(l

)

, awesome‘, 'sentence', 'for', 'making')
'n-grams'
sentence', 'for', 'making', 'n-grams', '.

"

Implementing n-grams

from nltk import ngrams

o NLTK imp|ementati0n sent = "This is an awesome sentence ."

e Paddings at string start & T e e
end pad left=True,

e Ensure each element of the left_pad symbol='<s>',)
sequence occurs at all for g in grams:
positions prantle)

'<s>', '<s>', '<s>', '<s>', 'This')

'<g>', '<s>', '<g>', 'This', 'is'")

'<s>', '<s>', 'This', 'is', 'an')

'<s>', 'This', 'is', 'an', 'awesome')
'This', 'is', 'an', 'awesome', 'sentence')
is', 'an', 'awesome', 'sentence', '.'")

e Keep the probability
distribution correct

1

'an', 'awesome', 'sentence', '.', '</s>")
'awesome', 'sentence', '.', '</s>', '</s>")
'sentence', '.', '</s>', '</s>', '</s>")

|

Sy '<s>, /s>, T8>, 1< /s>T)

Dealing with zeros

e \What if we see things that never occur in the corpus?

e That's where smoothing comes in

Steal probability mass from the present n-grams and share it
with the ones that never occur

OQV - out of vocabulary words

Add-one estimation aka Laplace smoothing

Backoff and interpolation

Good-Turing smoothing

Kneser-Ney smoothing

Practice time

e Let's generate text using an n-gram model!
e The Witcher aka Geralt of Rivia quotes

('3 The Witcher Universe
‘ v,

Some days Other days
| am like- | am like-

References

1.

w

Dan Jurafsky. N-gram Language Models - Chapter from Speech and
Language Processing: https://web.stanford.edu/~jurafsky/slp3/3.pdf
Dan Jurafsky lectures: https://youtu.be/hB2ShMIwTyc

GitHub: https://qithub.com/olga-black/ngrams-pykonik

Bartosz Ziotko, Dawid Skurzok. N-grams Model For Polish:
http://www.dsp.agh.edu.pl/_media/pl:resources:ngram-docu.pdf

Corpus source: https://witcher.fandom.com/wiki/Geralt_of Rivia/Quotes
Corpus source: https://www.magicalquote.com/character/geralt-of-rivia/

https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://youtu.be/hB2ShMlwTyc
https://github.com/olga-black/ngrams-pykonik
http://www.dsp.agh.edu.pl/_media/pl:resources:ngram-docu.pdf
https://witcher.fandom.com/wiki/Geralt_of_Rivia/Quotes
https://www.magicalquote.com/character/geralt-of-rivia/

Olha Diakonova

Advertisement Analyst for Cognizant @ Google
olha.v.diakonova@gmail.com

GitHub: https://qithub.com/olga-black

Pykonik Slack: Olha

About me

https://github.com/olga-black

Thank you very much!

