

~F— g = .]
=== — <)

Clean Architecture

1. Independence of frameworks

2. Testability
3. Independence of Ul
4. Independence of database

Clean Architecture

Putting customer's concerns in the first place

Project: Auctions online

User stories

e As a bidder | want to make a bid to win an auction

e As a bidder | want to be notified by e-mail when my offer is a
winning one

e As an administrator | want to be able to withdraw a bid

Django + Rest Framework!

DB

Migrations |

AdminPanel

Views

ModelForms Serializers
Models <«—

DjangoORM

Models first

class Auction(models.Model):
title = models.CharField(...)
initial price = models.DecimalField(...)
current price = models.DecimalField(...)

class Bid(models.Model):
amount = models.DecimalField(...)
bidder = models.ForeignKey(...)
auction = models.ForeignKey(Auction, on delete=PROTECT)

User stories

e As an administrator | want to be able to withdraw a bid

def save related(self, request, form, formsets, *args, **kwargs):
ids of deleted bids = self. get ids of deleted bids(formsets)
bids to withdraw = Bid.objects.filter(
in=ids of deleted bids)

auction = form.instance

old winners = set(auction.winners)
auction.withdraw bids(bids to withdraw)
new winners = set(auction.winners)

self. notify winners(new winners - old winners)

super().save related(request, form, formsets, *args, **kwarg

def save related(self, request, form, formsets, *args, **kwargs):
ids of deleted bids = self. get ids of deleted bids(formsets)
bids to withdraw = Bid.objects.filter(
pk in=ids of deleted bids)

self. notify winners(new winners - old winners)

super().save related(request, form, formsets, *args, **kwarg

def save related(self, request, form, formsets, *args, **kwargs):
ids of deleted bids = self. get ids of deleted bids(formsets)
bids to withdraw = Bid.objects.filter(
pk in=ids_ of deleted bids)

auction = form.instance

old winners = set(auction.winners)
auction.withdraw bids(bids to withdraw)
new winners = set(auction.winners)

self. notify winners(new winners - old winners)

super().save related(request, form, formsets, *args, **kwarg

Clean Arch - building block #1

class WithdrawingBid:
def withdraw bids(self, auction id, bids ids):
auction = Auction.objects.get(pk=auction id)
bids to withdraw = Bid.objects.filter(
pk in=ids of deleted bids)

old winners = set(auction.winners)
auction.withdraw bids(bids to withdraw)
new winners = set(auction.winners)

self. notify winners(new winners - old winners)

UseCase OR Interactor

¢ p -

- A o

C \ rch
'S “ha

What about tests?!

Business logic is coupled with a framework, so are tests...

Testing through views

from django.test import TestCase

class LoginTestCase(TestCase):

def test login(self):

User.objects.create(...)
response = self.client.get('/dashboard/")

self.assertRedirects(response, '/accounts/login/')

How a textbook example looks like?

class MyTest(unittest.TestCase):
def test add(self):
expected = 7

actual = add(3, 4)

self.assertEqual (actual, expected)

No side effects and dependencies makes code easier to test

Getting rid of dependencies: find them

class WithdrawingBidUseCase:
def withdraw bids(self, auction id, bids ids):
auction = Auction.objects.get(pk=auction id)
bids to withdraw = Bid.objects.filter(
in=ids of deleted bids)

old winners = set(auction.winners)
auction.withdraw bids(bids to withdraw)
new winners = set(auction.winners)

self. notify winners(new winners - old winners)

Getting rid of dependencies: hide them

class WithdrawingBidUseCase:
def withdraw bids(self, auction id, bids ids):

old winners = set(auction.winners)
auction.withdraw bids(bids)
new winners = set(auction.winners)

self.auctions repository.save(auction)

self.bids repository.save(bid)

self. notify winners(new winners - old winners)

Getting rid of dependencies: hide them

class WithdrawingBidUseCase:
def withdraw bids(self, auction id, bids ids):

Ciblea el - UEdauctions repository.get(auction id)

bids = self.bids repository.get by ids(bids ids)

old winners = set(auction.winners)
auction.withdraw bids(bids)
new winners = set(auction.winners)

SARMauctions repository.save(auction)
for bid in bids:

self.bids repository.save(bid)

self. notify winners(new winners - old winners)

Clean Arch - building block #2

class AuctionsRepo(metaclass=ABCMeta):

@abstractmethod
def get(self, auction id):

pass

@abstractmethod
def save(self, auction):
pass

Interface / Port

Clean Arch - building block #3

class DjangoAuctionsRepo(AuctionsRepo):

def get(self, auction id):
return Auction.objects.get(pk=auction id)

Interface Adapter / Port Adapter

Combine together

class WithdrawingBidUseCase:
def init (self, auctions repository: AuctionsRepo):
self.auctions repository = auctions repository

django adapter = DjangoAuctionsRepo()
withdrawing bid uc = WithdrawingBidUseCase(django adapter)

Dependency Injection

import inject

def configure inject(binder: inject.Binder):
binder.bind(AuctionsRepo, DjangoAuctionsRepo())

inject.configure once(configure inject)

class WithdrawingBidUseCase:

auctions repo: AuctionsRepo = inject.attr (AuctionsRepo)

Benefits from another layer

It is easier to reason about logic

It is possible to write TRUE unit tests
Work can be parallelized

Decision making can be delayed

Our logic is still coupled to a database!

class WithdrawingBidUseCase:
def withdraw bids(self, auction id, bids ids):
auction = self.auctions repository.get(auction id)
bids = self.bids repository.get by ids(bids ids)

old winners = set(auction.winners)

auction.withdraw bids(bids)

new winners = set(auction.winners)

self.auctions repository.save(auction)
for bid in bids:

self.bids repository.save(bid)

self. notify winners(new winners - old winners)

Clean Arch - building block #0

class Auction:
def init (self, id: int, title: str, bids: List[Bid]):
self.id = id
self.title = title
self.bids = bids

def withdraw bids(self, bids: List[Bid]):

def make a bid(self, bid: Bid):

@property
def winners(self):

Entity

Clean Arch - building block #3

class DjangoAuctionsRepo(AuctionsRepo):
def get(self, auction id: int) -> Auction:
auction model = AuctionModel.objects.prefetch related(
'bids'
) .get (pk=auction id)

bids = |
self. bid from model(bid model)
for bid model in auction model.bids.all()

]

return Auction(
auction model.id,
auction model.title,
bids

Interface Adapter / Port Adapter

All that's left is to call
UseCase from Django
any framework

Clean Arch building blocks altogether

~ External
world

S x
cﬂé & Infrastructure %&,

S interfaces adapters D,

~ Application

UseCases, Inferfaces

| > > » Domain | |

Enfifies & friiends

What to be careful of?

non-idiomatic framework use
more code (type hints help)
copying data between objects
validation?

overengineering

...
e
-

(]

-
- Py
¥

e e

When it pays off?

e |ots of cases - testability
e delaying decision making - stay lean
e complicated domain

That's all, folks!

Questions?

Futher reading

https:/8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
Clean Architecture: A Craftsman's Guide to Software Structure and Design
Clean Architecture Python (web) apps - Przemek Lewandowski
Software architecture chronicles - blog posts series
Boundaries - Gary Bernhardt
Exemplary project in PHP (blog post)
Exemplary project in PHP (repo)
Exemplary project in C# (repo)

Exemplary project in Python (repo)

STYNexT | breadcrumbscollector.tech | @EnforcerPL

https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://www.amazon.de/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164
http://slides.com/haxoza/clean-architecture-python#/
https://herbertograca.com/2017/07/03/the-software-architecture-chronicles/
https://www.destroyallsoftware.com/talks/boundaries
https://www.entropywins.wtf/blog/2016/11/24/implementing-the-clean-architecture/
https://github.com/wmde/FundraisingFrontend
https://github.com/matthewrenze/clean-architecture-demo.git
https://github.com/Enforcer/clean-architecture-example-1
https://breadcrumbscollector.tech/
https://twitter.com/EnforcerPL

